Table 1 Compressibility factor of argon-ammonia system at 50°C

P, atm	Z=PV/RT Composition, mol%							
	0	1.0000	1.0000	1.0000	1.0000	1.0000		
2	0.9992	0.9985	0.9981	0.9962	0.9856			
4	0.9984	0.9973	0.9964	0.9925	0.9704			
6	0.9975	0.9960	0.9947	0.9888	0.9544			
8	0.9967	0.9949	0.9931	0.9852	0.9372			
10	0.9960	0.9937	0.9916	0.9816	0.9188			
12	0.9951	0.9925	0.9900	0.9780	0.8993			
14	0.9943	0.9915	0.9885	0.9744	0.8793			
16	0.9935	0.9904	0.9870	0.9708	0.8592			
18	0.9928	0.9894	0.9855	0.9674	0.8385			
20	0.9923	0.9883	0.9840	0.9640				
22	0.9915	0.9872	0.9826	0.9606				
24	0.9907	0.9863	0.9812	0.9572				
26	0.9900	0.9854	0.9800	0.9538				
28	0.9894	0.9845	0.9786	0.9505				
30	0.9888	0.9836	0.9773	0.9471				
40	0.9856	0.9798	0.9714					
50	0.9827	0.9767	0.9663					

Table 1 (continued)

1/V, mol/ <i>l</i>	Z=PV/RT Composition, mol%						
	0	1.0000	1.0000	1.0000	1.0000	1.0000	
0.2	0.9978	0.9967	0.9955	0.9903	0.9595		
0.4	0.9957	0.9934	0.9913	0.9810	0.9195		
0.6	0.9937	0.9905	0.9872	0.9719	0.8798		
0.8	0.9917	0.9878	0.9835	0.9632	0.8393		
1.0	0.9899	0.9853	0.9799	0.9548			
1.2	0.9881	0.9831	0.9766	0.9468			
1.4	0.9865	0.9810	0.9736				
1.6	0.9849	0.9792	0.9707				
1.8	0.9835	0.9776	0.9681				
2.0	0.9820	0.9763	0.9657				

Table 2 Experimental equations of state for argon-ammonia system at 50°C

Composition, mol%	Z=1+1	1/V, mol/ l		
Ar — NH ₃	В	C	D	Range of 1/V
100.0 — 0.0	-0.01124	0.00113	V	up to 2.0
91.8 — 8.2	-0.01748	0.00282		up to 1.9
83.9 — 16.1	-0.02296	0.00291		up to 1.89
63.5 — 36.5	-0.04397	0.00420		up to 1.16
0.0 — 100.0	-0.2172	0.0628	-0.0566	up to 0.9
Composition, mol% $Z = 1 + B'P + C'P^2 + D'P^3,$			P, atm	
Ar — NH ₃	B' · 103	C' · 106	$D' \cdot 10^6$	Range of P
100.0 — 0.0	-0.417	1.44		up to 50
91.8 — 8.2	-0.667	4.05		up to 49
83.9 — 16.1	-0.883	4.19	- 10 marin	up to 48
63.5 — 36.5	-1.869	3.38	Kas a- 1	up to 29
0.0 — 100.0	-7.477	-34.6	-2.90	up to 19

Nitrogen-ammonia system

The compressibility factors were measured at 50°C and up to 50 atm for three kinds of the binary mixtures of nitrogen-ammonia as below:

87.3 mol% N₂-12.7 mol% NH₃,

77.0 mol% N2-23.0 mol% NH3,

62.3 mol% N2-37.7 mol% NH3.

The smoothed values of Z were obtained by the same method as in the case of the above argonammonia mixtures. They were in agreement with the experimental values within the deviation of 0.2%. They are shown in Table 3. In the table, the values of pure ammonia in the previous work¹⁾ and the values of pure nitrogen in the previous work⁵⁾ were also represented.

The experimental equations of state were obtained in the same manner as in the case of argon-ammonia systems. The results are shown in Table 4. The values of Z calculated by these equations were in agreement with the experimental values within the deviation of 0.2%.

Consideration on the second virial coefficients of the mixtures

The values of B in Tables 2 and 4 can be looked upon as the experimental second virial coefficients of the mixtures though they are not so accurate because they were obtained only from the experimental P-V-T data at higher pressures than several atmospheres.

⁵⁾ K. Date and H. Iwasaki, Annual Report of the Asahi Glass Foundation for the Contribution to Industrial Technology, 11, 65 (1965)